随手记录linux bond工作原理。转载Linux主机网卡绑定bond0详解

同组的小伙子问了我一个问题,bond0是怎么工作的,找了篇简洁的文章。

1 什么是bond

网卡bond是通过多张网卡绑定为一个逻辑网卡,实现本地网卡的冗余,带宽扩容和负载均衡,在生产场景中是一种常用的技术。Kernels 2.4.12及以后的版本均供bonding模块,以前的版本可以通过patch实现。可以通过以下命令确定内核是否支持 bonding:

[root@lixin network-scripts]# cat /boot/config-2.6.32-573.el6.x86_64 |grep -i bonding

CONFIG_BONDING=m

2 bond模式

bond的模式常用的有两种:

  1. mode=0(balance-rr)

  表示负载分担round-robin,并且是轮询的方式比如第一个包走eth0,第二个包走eth1,直到数据包发送完毕。

  a) 优点:流量提高一倍

  b) 缺点:需要接入交换机做端口聚合,否则可能无法使用。

  1. mode=1(active-backup)

  表示主备模式,即同时只有1块网卡在工作。

  a) 优点:冗余性高

  b) 缺点:链路利用率低,两块网卡只有1块在工作

bond其他模式:

1.mode=2(balance-xor)(平衡策略)

表示XOR Hash负载分担,和交换机的聚合强制不协商方式配合。(需要xmit_hash_policy,需要交换机配置port channel)

特点:基于指定的传输HASH策略传输数据包。缺省的策略是:(源MAC地址 XOR 目标MAC地址) % slave数量。其他的传输策略可以通过xmit_hash_policy选项指定,此模式提供负载平衡和容错能力

  1. mode=3(broadcast)(广播策略)

    表示所有包从所有网络接口发出,这个不均衡,只有冗余机制,但过于浪费资源。此模式适用于金融行业,因为他们需要高可靠性的网络,不允许出现任何问题。需要和交换机的聚合强制不协商方式配合。

特点:在每个slave接口上传输每个数据包,此模式提供了容错能力

3.mode=4(802.3ad)(IEEE 802.3ad 动态链接聚合)

表示支持802.3ad协议,和交换机的聚合LACP方式配合(需要xmit_hash_policy).标准要求所有设备在聚合操作时,要在同样的速率和双工模式,而且,和除了balance-rr模式外的其它bonding负载均衡模式一样,任何连接都不能使用多于一个接口的带宽。

特点:创建一个聚合组,它们共享同样的速率和双工设定。根据802.3ad规范将多个slave工作在同一个激活的聚合体下。外出流量的slave选举是基于传输hash策略,该策略可以通过xmit_hash_policy选项从缺省的XOR策略改变到其他策略。需要注意的 是,并不是所有的传输策略都是802.3ad适应的,尤其考虑到在802.3ad标准43.2.4章节提及的包乱序问题。不同的实现可能会有不同的适应 性。

必要条件:

 - 条件1:ethtool支持获取每个slave的速率和双工设定

 - 条件2:switch(交换机)支持IEEE 802.3ad Dynamic link aggregation

  - 条件3:大多数switch(交换机)需要经过特定配置才能支持802.3ad模式

  1. mode=5(balance-tlb)(适配器传输负载均衡)

    是根据每个slave的负载情况选择slave进行发送,接收时使用当前轮到的slave。该模式要求slave接口的网络设备驱动有某种ethtool支持;而且ARP监控不可用。

特点:不需要任何特别的switch(交换机)支持的通道bonding。在每个slave上根据当前的负载(根据速度计算)分配外出流量。如果正在接受数据的slave出故障了,另一个slave接管失败的slave的MAC地址。

必要条件:

 - ethtool支持获取每个slave的速率

5.mode=6(balance-alb)(适配器适应性负载均衡)

在5的tlb基础上增加了rlb(接收负载均衡receive load balance).不需要任何switch(交换机)的支持。接收负载均衡是通过ARP协商实现的.

特点:该模式包含了balance-tlb模式,同时加上针对IPV4流量的接收负载均衡(receive load balance, rlb),而且不需要任何switch(交换机)的支持。接收负载均衡是通过ARP协商实现的。bonding驱动截获本机发送的ARP应答,并把源硬件地址改写为bond中某个slave的唯一硬件地址,从而使得不同的对端使用不同的硬件地址进行通信。来自服务器端的接收流量也会被均衡。当本机发送ARP请求时,bonding驱动把对端的IP信息从ARP包中复制并保存下来。当ARP应答从对端到达 时,bonding驱动把它的硬件地址提取出来,并发起一个ARP应答给bond中的某个slave。使用ARP协商进行负载均衡的一个问题是:每次广播 ARP请求时都会使用bond的硬件地址,因此对端学习到这个硬件地址后,接收流量将会全部流向当前的slave。这个问题可以通过给所有的对端发送更新 (ARP应答)来解决,应答中包含他们独一无二的硬件地址,从而导致流量重新分布。当新的slave加入到bond中时,或者某个未激活的slave重新 激活时,接收流量也要重新分布。接收的负载被顺序地分布(round robin)在bond中最高速的slave上当某个链路被重新接上,或者一个新的slave加入到bond中,接收流量在所有当前激活的slave中全部重新分配,通过使用指定的MAC地址给每个 client发起ARP应答。下面介绍的updelay参数必须被设置为某个大于等于switch(交换机)转发延时的值,从而保证发往对端的ARP应答 不会被switch(交换机)阻截。

必要条件:

  - 条件1:ethtool支持获取每个slave的速率;

  - 条件2:底层驱动支持设置某个设备的硬件地址,从而使得总是有个slave(curr_active_slave)使用bond的硬件地址,同时保证每个bond 中的slave都有一个唯一的硬件地址。如果curr_active_slave出故障,它的硬件地址将会被新选出来的 curr_active_slave接管其实mod=6与mod=0的区别:mod=6,先把eth0流量占满,再占eth1,….ethX;而mod=0的话,会发现2个口的流量都很稳定,基本一样的带宽。而mod=6,会发现第一个口流量很高,第2个口只占了小部分流量。

bond模式小结:

mode5和mode6不需要交换机端的设置,网卡能自动聚合。mode4需要支持802.3ad。mode0,mode2和mode3理论上需要静态聚合方式。

3 配置方式

3.1 使用NetworkManager

假设使用eno1和eno2创建bond0,模式为0。

nmcli connection add type bond ifname bond0 mod 0

nmcli connection add type cond-slave ifname eno1 master bond0
nmcli connection add type cond-slave ifname eno2 master bond0

然后重启network服务,使用ip a可查看到聚合口,切接口状态为up。

最后可手动配置bond0的配置文件:ifcfg-bond-bond0。如果存在ifcfg-eno1, ifcfg-eno2,,还需删除这些配置并重启network服务。

3.2 使用network配置

可以使用ifcfg文件方式直接配置bond:

物理网卡:

[root@lixin network-scripts]#cat ifcfg-eth0    

DEVICE=eth0

TYPE=Ethernet

ONBOOT=yes

BOOTPROTO=none

MASTER=bond0

SLAVE=yes         //可以没有此字段,就需要开机执行ifenslave bond0 eth0 eth1命令了。

[root@lixin network-scripts]#

[root@lixin network-scripts]#cat ifcfg-eth1    

DEVICE=eth1

TYPE=Ethernet

ONBOOT=yes

BOOTPROTO=none

MASTER=bond0

SLAVE=yes       

配置逻辑网卡:

[root@lixin network-scripts]#cat ifcfg-bond0     //需要我们手工创建

DEVICE=bond0

TYPE=Ethernet

ONBOOT=yes

BOOTPROTO=static

IPADDR=10.0.0.10

NETMASK=255.255.255.0

DNS2=4.4.4.4

GATEWAY=10.0.0.2

DNS1=10.0.0.2

[root@lixin network-scripts]#

重启network服务。